W) Check for updates

Methodological Brief

Entrepreneurship Theory and

A Methodological Practice

1-43
Guide for Quantitative Aricle rese adeines.
Analysis of Star Performance ok To. 7oz s
° ° Journals.sagepub.com/home/etp
in Entrepreneurship S Sage

Kaushik Gala'® and Andreas Schwab?

Abstract

Entrepreneurial performance is often right-skewed and heavy-tailed, yet empirical studies typi-
cally focus on average outcomes, assuming normality. Recent research addresses this by examin-
ing full performance distributions. We extend this work by introducing an intuitive framework
with three distinct characteristics of distributional tails: (a) tail impact, the contribution of star
performers relative to the rest; (b) tail extremity, the extent by which the highest performer
exceeds the typical performer; and (c) tail frequency, the fraction of performers who are stars.
We outline a methodological guide, offer illustrative examples, and provide R code to enrich
future investigations of star performance in entrepreneurship.
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Introduction

In many entrepreneurial contexts, a few star performers consistently outperform typical
performers (Crawford et al., 2015; Decker et al., 2014; Gala & Schwab, 2024; Shane,
2009). Consequently, the performance distributions for a pool of entrepreneurial individu-
als, teams, or firms are often right-skewed and heavy-tailed (Crawford, Joo, & Aguinis,
2024; Gala et al., 2024). In other words, when entrepreneurial performance is plotted as a
distribution, it is highly asymmetric and has an extended right tail.' These distributional
characteristics create challenges for entrepreneurship research that seeks to identify drivers
of success based on their impact on average performance (Dean et al., 2007, Gala &
Schwab, 2024). Indeed, average-centric studies not only leave variance unexplained and
weaken the robustness of empirical findings but also inhibit the development of evidence-
based theories of star performance (Beamish & Hasse, 2022; Gibbert et al., 2021; Ruef &
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Birkhead, 2024). Therefore, it is critical to supplement such studies with studies that cap-
ture the full range of performance and explicitly investigate star performance (Clark et al.,
2023; Hymer & Smith, 2024).

Beyond entrepreneurship research, scholars have drawn attention to star performers in
other organizational contexts (Aguinis & O’Boyle, 2014; Aguinis et al., 2013). These studies
have inspired research that adopts a distributional perspective (i.e., explicitly investigates
the full range and extremity of performance) and introduces methodologies to capture
variability in performance (Certo et al., 2024). Crawford, Joo, and Aguinis (2024) compiled
a comprehensive list of such studies and distribution-focused methodologies. For specific
entrepreneurial contexts, research has identified distributional shapes (e.g., lognormal) that
best characterize the observed performance distributions and linked these shapes to specific
underlying generative mechanisms, that is, the factors and processes that may explain the
emergence of star performers (Gala et al., 2024).

Despite these scholarly efforts and methodological advances, most empirical entrepre-
neurship studies do not explicitly investigate star performers or directly examine perfor-
mance distributions. Only a few studies report relevant statistics, such as skewness (Gala &
Schwab, 2024). Others simply log-transform the outcome variables without explicit theore-
tical justification or interpretation of effect sizes (Becker et al., 2019; Ronkko et al., 2022).

Several reasons may explain why scholarly attempts to adopt a distributional perspective
in quantitative empirical studies have been impeded. First, this focus on performance distri-
butions is relatively new to entreprencurship research. Thus, the required analytical frame-
works and methodological approaches are not (yet) well-established in entrepreneurship
research (Crawford, Joo, & Aguinis, 2024). Second, the traditional distributional proper-
ties, such as skewness and kurtosis, do not lend themselves to intuitive examinations of star
performance and subsequent interpretation of empirical findings to inform entrepreneur-
ship practice and policy (Berglund et al., 2018). Instead, studies of star performance would
benefit from a multifaceted conceptualization and investigation of distributional tails
because star performance can manifest in different forms, ranging from a single extreme
performer to many different configurations of exceptional performers.

To address these issues, this methodological brief introduces an intuitive framework and
related analytical guidance for future empirical investigations of star performance. This
brief is organized as follows. First, we outline the primary levels of analysis when adopting
a distributional perspective. Next, we review the statistical properties commonly used to
estimate variability. Then, we introduce three interrelated yet distinct features of distribu-
tional tails and ways to operationalize them. We outline how these tail characteristics pro-
vide a more comprehensive understanding of star performance, thus enabling a richer
interpretation of empirical observations. Finally, we use data for Inc. 5000 companies
(2021 edition) to illustrate the application of this framework to capture star performance
in entrepreneurship. In Supplemental Appendix 1, we also provide corresponding R code
to help scholars apply the introduced framework to their datasets.

The primary contribution of this study is the introduction of a framework and related
methodology to capture nuances of performance distributions. The suggested tail charac-
teristics promise new theoretical and empirical insights into star performance in entrepre-
neurial settings. Table 1 situates this study amidst related research in entreprencurship. As
shown, prior entrepreneurship research that adopted a distribution perspective has ranged
from conceptual and inductive qualitative studies to quantitative studies that involve
exploratory analyses or hypothesis development and testing. Our contribution is best cate-
gorized as “methodological development” that expands the scope of empirical studies to
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distributional shapes and tails. Moreover, the proposed tail characteristics—tail impact,
tail extremity, and tail frequency—promise nuanced insights into star performance for
entrepreneurship theory and practice.

Primary Levels of Analysis When Examining Variability in
Entrepreneurial Performance

A distributional perspective on performance explicitly examines the full range of outcomes,
not only the mean and standard deviation (SD), for a given population of performers.
When adopting a distributional perspective, empirical studies of entrepreneurial perfor-
mance choose from two primary levels of analysis. The first level is that of performers, that
is, individuals, teams, or ventures whose performance warrants deeper understanding,
explanation, and prediction. Here, the focal dependent variable is performance, and studies
typically examine how one or more antecedents influence performance (Crawford, Linder,
et al., 2024). For example, a study might examine how customer ratings influence the rela-
tive performance of sellers in a specific product category on Amazon.com. For this level, a
distributional analysis starts by evaluating the variability in performance using statistical
techniques, then locates star performers in the distribution, and finally compares them with
typical performers. Such studies can use quantile regression or additive nonparametric
regression to test whether and how the influence of antecedents differs for star performers
versus others (Fox, 2005; Li, 2015). Instead of focusing on predicting average performance
or imposing a functional (e.g., linear) form on the relationship between a predictor and
performance, these techniques provide flexibility in capturing heterogeneous effects across
the distribution and uncovering nonlinear patterns that may be overlooked in average-
focused analyses.

The second relevant level of analysis is that of pools of performers. Such research shifts
the focus of investigation to entire ecologies of performers, such as industries, markets, or
product categories, wherein firms compete for survival, growth, and profits (Aldrich &
Martinez, 2001). For example, a study might examine how the competitive intensity in a
product category on Amazon.com influences the performance distribution for entrepre-
neurs operating in that category. Thus, the emphasis is on “many interacting firms in par-
ticular selection environment,” and “it is ultimately the fates of populations that are of
concern, not the fates of firms” (Nelson & Winter, 1982, p. 410). Accordingly, the focal
dependent variable can be a distributional property, such as skewness or kurtosis, and
related studies examine how antecedents influence key characteristics of performance dis-
tributions (Aguinis et al., 2016; Gala et al., 2024).

Statistical Properties to Evaluate Variability in Performance

Any investigation of star performance, regardless of the chosen level of analysis, ought to
start with empirical probing of the focal dependent variable: performance. Such examina-
tion begins by graphically plotting the performance distribution (Wennberg & Anderson,
2020). Then, a set of established statistical properties should be estimated to develop an ini-
tial understanding of the distribution; see Table 2 for a summary. We briefly discuss these
properties below.
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Table 2. Statistical Measures of Central Tendency and Variability of Performance.

Statistical Key Sensitivity to an Type of

measure question extremely high value estimate

Mean What is the average performance? High Unit-based

Median What is the typical (i.e., most likely) Low Unit-based
performance?

Mode What is the most common Low Unit-based
performance

Minimum What is the worst performance? Low Unit-based

Maximum What is the best performance?! High Unit-based

Standard deviation How much does the performance High Unit-based
vary around the mean?

Median absolute deviation How much does the performance Low Unit-based
vary around the median?

Quantile absolute deviation =~ How much does the performance Low Unit-based
vary around the specified
quantile?

Coefficient of Variation How much does the performance High Unitless
vary around the mean?

Gini coefficient How unequally distributed is the Moderate Unitless
performance?

Skewness How asymmetric is the distribution Moderate Unitless
of performance?

Kurtosis How heavy are the tails of the High Unitless

distribution of performance?

Central Tendency: Mean, Median, and Mode

The first property estimated when examining variability is the central tendency. Research has
traditionally used the mean of performance to represent the typical performer to test hypoth-
eses about how one or more antecedents influence performance, on average. However, meth-
odologists have highlighted the limitations of the mean as a measure of central tendency for
right-skewed and heavy-tailed distributions (Leys et al., 2013). For example, a single extreme
value can substantively shift the average value for a distribution (Aguinis et al., 2013). When
outliers,” or extreme data points, carry disproportionate influence, the median is considered a
more robust estimate of central tendency than the mean (Hartwig et al., 2020; Wilcox &
Keselman, 2003). Furthermore, the mode captures the value that appears most frequently in
a distribution. Although less commonly used in entrepreneurship research, the mode can pro-
vide insights into identifying clusters of performers, such as a multimodal performance distri-
bution. The relative position of the mean, the median, and the mode offers rudimentary
information about the nature of asymmetry of a distribution.

Range: Maximum and Minimum

Next, researchers should examine the maximum and minimum values of performance.
The highest observed value of performance represents the best empirical estimate for
maximum performance. However, this estimate is often conservative for right-skewed,
heavy-tailed distributions and may substantially underestimate the feasible maximum
performance (Taleb, 2020). Conversely, when the minimum observed performance is
zero, empirical analyses must account for left-censoring, particularly if zeros represent a
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substantive fraction of performers. For example, removing observations where the value
of performance is zero will artificially inflate the estimates of median and mean perfor-
mance (Hunt & Lerner, 2017).

Variability: SD and Median Absolute Deviation

The SD is the most commonly used measure of variability in entrepreneurship research.
Because its definition involves deviations from the mean, its estimation is vulnerable to
extreme observations because the observed deviations from the mean are squared before
averaging. To mitigate this issue, statisticians recommend using variants of the median
absolute deviation (MAD), which involves neither squared terms nor averaging and is,
therefore, more robust for highly skewed distributions (Rousseeuw & Croux, 1993;
Rousseeuw & Hubert, 2011).

Inequality: Coefficient of Variation and Gini Coefficient

A commonly used unitless measure of inequality is the Coefficient of Variation (CoV), esti-
mated as the ratio of the SD to the mean (Allison, 1978; Kokko et al., 1999). Because it
focuses on the mean as the measure of central tendency, the CoV is also sensitive to extreme
observations (Arachchige et al., 2022). Nevertheless, it can be a diagnostic tool to tenta-
tively infer the functional form of performance distributions (Certo et al., 2020; Cirillo,
2013; Gala & Schwab, 2024).

Another measure of inequality frequently used in organizational research is the Gini
coefficient, which ranges from 0 to 1 and is not centered on the mean (Harrison & Klein,
2007). In contrast to the CoV, which indicates the spread or volatility of univariate data
around the mean, the Gini coefficient focuses on the overall inequality by assessing all pos-
sible pairs of values in the data. Thus, an extreme observation is more likely to dispropor-
tionately increase the CoV, whereas the Gini coefficient is relatively more robust to
extreme values. The Gini coefficient has traditionally been used in finance and economics
research that examines the influence of factors such as geography or government policy on
income and wealth inequality (Oancea & Pirjol, 2019). This statistic has been applied to
similar investigations in entrepreneurship research (Xie et al., 2023).

Skewness and Kurtosis

Skewness and kurtosis are the third and fourth moments of a distribution, with skewness
reflecting asymmetry and kurtosis reflecting extremity (DeCarlo, 1997; Doane &
Seward, 2011). Put simply, skewness indicates whether the data are lopsided, while kur-
tosis indicates how pronounced the extreme highs and lows are relative to the average.
A skewness of 0 indicates a perfectly symmetric distribution, as illustrated in the middle
panel of Figure 1. Negative skewness reflects a longer left tail, whereas positive skewness
reflects a longer right tail. In entrepreneurial contexts, the distribution of performance—
when captured using continuous and positive scales—commonly features right-skew,
wherein the mean is substantially greater than the median because extreme observations
strongly influence the mean (Gala & Schwab, 2024).

Kurtosis captures the “tailedness” of a distribution (Westfall, 2014). As illustrated in
Figure 2, a platykurtic distribution has lighter tails and a flatter peak than a normal distri-
bution, a mesokurtic distribution (like the normal) has moderate tails and peak, and a lep-
tokurtic distribution is sharply peaked with heavy tails, indicating a higher likelihood of
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Figure 1. Anillustration of positive, zero, and negative skew in distributions.
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Figure 2. An illustration of varying degrees of kurtosis in distributions.

extreme values. Star performance in entrepreneurship is often characterized by right-
skewed and heavy-tailed (i.e., leptokurtic) distributions (Crawford, Joo, & Aguinis, 2024;
Crawford et al., 2015).

When evaluating univariate normality, scholars often use skewness > 2 and kurtosis > 7
as heuristic indicators of severe non-normality (West et al., 1995). For example, Gala et al.
(2024) report skewness of 16.1 and kurtosis of 358.5 for the distribution of entrepreneurial
performance on a digital platform, indicating the prevalence and dominance of star perfor-
mers. However, statisticians have discussed the challenges in interpreting these abstract
statistical properties, which are poor descriptors of overall distributional shapes (Balanda
& MacGillivray, 1988; Borroni & De Capitani, 2023; Micceri, 1989). Consequently, these
measures provide limited insights into the thickness and extremity of distributional tails
(i.e., the presence and relevance of star performers).
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Table 3. Equations of Statistical Measures of Central Tendency and Variability.

Statistical measure Computation R package::function( )
Mean > X mean( )
n
Median Middle value of ordered data median( )
Mode Most frequently occurring value DescTools::Mode( )
Minimum min(xy, X2, ..., Xn) min()
Maximum max(Xy, Xz, ..., Xn) max( )
Standard deviation T (4 — Mean)z sd()
n—|
Median absolute deviation median(|x; — Median|) mad( )
Quantile absolute deviation® Q(|x; — Median|) qad()
Coefficient of variation SD/Mean sd( )/mean()
Gini coefficient P ZF:| xi — x| DescTools::Gini( )
2xnxMean
Skewness® > (x; — Mean) el07 l:skewness( )
(n— 1)xSD
Kurtosis® >~ (x;—Mean) el07 | :kurtosis( )
(n— 1)xSD

Note. n=number of observations; x; = value in the dataset; SD = standard deviation.
?See Akinshin (2022) for a detailed explanation.

®The R function adds a correction for small sample bias to the equation.
“Equation corresponds to type = | (regular kurtosis, not excess kurtosis).

Nevertheless, skewness and kurtosis have been used as the focal dependent variable in
studies where the level of analysis is a pool of performers (Makino & Chan, 2017).
Considering the strengths and limitations of these various statistics, researchers can inte-
grate the insights gained from each measure to develop a rudimentary understanding of
star performance in their data. Table 3 provides the relevant equations and corresponding
R packages for estimation.

Assumed Distributional Shape and Its Parameters

The important next step in examining variability in performance is to assess the entire dis-
tribution directly. Seminal organizational research in this direction typically assumed a
specific distribution shape, tested the goodness-of-fit between the observed distribution
and this shape, and then estimated the relevant parameters. Often, this shape was the
“pure power law,” a highly asymmetric distribution characterized by a large number of
observations well below the mean and a small number of extreme observations that popu-
late the right tail. For example, Aguinis et al. (2016) and Crawford et al. (2015) used the
Kolmogorov-Smirnov statistic to test whether the observed performance distributions
matched a power law shape; if yes, they estimated the corresponding critical value (Xpi,)
and scaling exponent (alpha). Here, X ,;, represents the minimum value of performance
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for which the power law holds, and alpha represents the rate of decline in frequency for
high values (Clauset et al., 2009). However, assuming a specific shape, especially a pure
power law, has been challenged as potentially inaccurate and, therefore, a threat to the
accuracy of findings (Broido & Clauset, 2019; Stumpf & Porter, 2012).

Most Likely Distributional Shape and Its Parameters

The limitations arising from only considering a dichotomy of normal versus power law dis-
tributions were overcome by a methodological advance: distribution pitting. Specifically,
Joo et al. (2017) suggested the use of pairwise comparisons between seven shapes (i.e., nor-
mal, Poisson, Weibull, exponential, lognormal, power law, and power law with exponen-
tial cutoff) to identify the type of distribution most likely to characterize the observed
performance data. Notably, the power law with exponential cutoff exemplifies a combina-
tion of two distributions, the pure power law and the exponential, indicating the possibility
of fitting more complex shapes to empirically observed performance distributions in
entrepreneurship.

Joo et al. (2017) also developed the corresponding R package Dpit for distribution
pitting, a detailed description of which is available in the appendix of Crawford, Joo,
and Aguinis (2024). This technique to identify the most likely distribution shape can
guide the choice of distributional parameters to be used as focal dependent variables.
For example, Gala et al. (2024) used the Dpit package and found that the lognormal
shape best characterizes the distribution of entrepreneurial performance for most prod-
uct domains within a digital platform. Therefore, they used the lognormal scale para-
meter (mu) as a dependent variable—while controlling for the lognormal shape
parameter (sigma)—to test hypotheses about the influence of domain-level antecedents
on the distribution of performance.

Figure 3 illustrates some distributional shapes using simulated data and shows how the
pure power law is associated with the most extreme cases of star performance. Notably, the
stretched exponential distribution, essentially the Weibull distribution with a shape para-
meter of less than one, can arise from multiplicative processes, similar to the lognormal dis-
tribution (Laherrere & Sornette, 1998). However, this distribution has “lighter” tails than
the lognormal, as indicated by the maximum values.

From Distributional Shapes to Generative Mechanisms

Importantly, identifying a specific functional form, such as lognormal or power law, as
the best-fitting shape using a distribution-pitting method does not necessarily translate
into identifying a specific generative mechanism because multiple mechanisms (e.g.,
phase transition, self-organized criticality) can engender the same distributional shape
(e.g., pure power law) (Andriani & McKelvey, 2009). Moreover, comparisons based on
goodness-of-fit or maximum likelihood statistics focus on relative rather than absolute
fit, implying that the “best” distribution may still inaccurately represent the data.
Right-skewed, heavy-tailed distributions are particularly challenging to distinguish in
finite samples, as evidenced by re-examining datasets initially believed to follow a
power law distribution (Broido & Clauset, 2019; Stumpf & Porter, 2012). Even when
statistical evidence strongly supports a specific functional form, distribution-pitting
approaches do not explicitly model or test the causal processes that generate the
observed distributions.
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[A] Linear Y-Axis

Power Law

[B] Logarithmic Y-Axis?

\

\

Power Law

Normal Exponential

Figure 3. A comparison of distributional shapes using simulated data: (A) Linear Y-axis, (B) Logarithmic
Y-axis.?

Note. For all distributions, sample size = 10,000, minimum = approximately 0.0, and mean = approximately 2.0. Standard
deviation for simulated data: Normal (0.6), Exponential (2.0), Stretched Exponential (3.5), Lognormal (3.3), Power Law
(5.4). Maximum for simulated data: Normal (4.6), Exponential (22.3), Stretched Exponential (57.9), Lognormal (83.7),
Power Law (197.1). The Exponential (blue) is a straight line of negative slope on semi-log axes.

*We thank an anonymous reviewer for suggesting the addition of this figure.

Table 4 draws on prior literature to present a preliminary mapping of multiple genera-
tive mechanisms to specific distributional shapes (Nair et al., 2022). This many-to-one cor-
respondence calls for empirical studies, such as Gala et al. (2024), that move beyond
distribution pitting and directly probe the causal processes underlying the right-skewed,
heavy-tailed distributions often observed in entrepreneurial contexts.
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Table 4. Mapping Distributional Shapes to Plausible Generative Mechanisms.

Distributional shapes

Plausible generative mechanisms

Relevant literature

Normal (Gaussian)

Exponential (Gamma)

Stretched Exponential
(Weibull)

Lognormal

Power law (Pareto)

Asymmetric Exponential
Power (Subbotin),
including Laplace as a
special case

Homogenization, performance
constraints, random shocks, and
additive interactions between
independent factors

Cumulative advantage with diminishing
returns, incremental differentiation
(size-dependent growth rate),
memoryless processes (constant
hazard rate)

Multiplicative processes with growth
constraint, nonconstant hazard rate,
preferential attachment with aging or
ceiling effects

Positive feedback loops, multiplicative
interactions between independent
factors, proportional differentiation
(size-independent growth rate), and
the theory of breakage

Niche proliferation, path dependence
(memory effects), phase transition,
preferential attachment, self-
organized criticality, and many others®

Classical competition with growth
constraints, heterogeneous
competition, investor expectations,
luck, and aggregation of micro-shocks

Joo et al. (2017), Nair et al.
(2022), Sornette (2006)

Bottazzi and Secchi (2006),
Bradley and Aguinis (2023),
Joo etal. (2017)

Dorogovtsev and Mendes
(2000), Laherrere and
Sornette (1998), Nair et al.
(2022)

Crow and Shimizu (1987), Gala
et al. (2024), Joo et al. (2017),
Limpert et al. (2001),
Mitzenmacher (2004)

Andriani and McKelvey (2009,
2011), Newman (2005), Sethna
(2021)

Alfarano and Milakovi¢ (2008),
dos Santos and Scharfenaker
(2019), Mundt and Oh (2019)

*See Andriani and McKelvey (2009) for a comprehensive list of plausible generative mechanisms for power law

distributions.

Shifting the Focus to Distributional Tails: Identifying Star Performers

The preceding statistical properties provide a starting point for a deeper understanding of
performance variability, including initial insights into centrality, dispersion, inequality, lop-
sidedness, and extremity. These insights serve as a foundation for the next step, which
involves examining distributional tails to identify star performers directly. Notably, tradi-
tional organizational research focused on average performance considers extreme observa-
tions as problematic outliers and a “nuisance” to be handled (Sullivan et al., 2021). Related
studies use statistical techniques to identify outliers and run analyses to evaluate and con-
trol their impact (Aguinis et al., 2013). For example, researchers often use two SDs above
the mean as a cutoff to identify outliers and then (a) drop these outliers, (b) winsorize the
data, or (c) run regression analyses with and without the outliers.

In contrast, researchers focused on star performance treat extreme observations as their
primary focus of investigation (Beamish & Hasse, 2022; Downes & Lee, 2023; Ruef &
Birkhead, 2024). Star performers are influential observations that affect substantive con-
clusions and merit explicit investigation (Aguinis et al., 2013). In the extreme, the study of
a single star performer has been used to develop theories of entrepreneurial success (Ruef
et al., 2023). In “large N” studies that adopt a distributional perspective, such “outliers”
reside in the right tails of performance distributions. Therefore, we discuss statistical
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Table 5. Star Performance Cutoffs in Empirical Studies.

Likelihood of Empirical examples in
identifying too management and
many points entrepreneurship
Basis for outlier cutoff Strength/limitation as outliers research
Mean, standard Most commonly used in Low Berkhout et al. (2016),
deviation management and Kulich et al. (2011)
entrepreneurship research
Median, median More robust to extreme High Miron-Spektor et al.
absolute deviation® values of performance (2023), Song et al.
(2018)
Power law parameter Assumes that actual Low Booyavi and Crawford
Xinin performance distribution (2023), Crawford et al.
fits a power law (2015), Crawford,
Linder, et al. (2024)
Interquartile range Relatively robust to extreme High Arikan and Shenkar
values of performance (2013), Glaub et al.
(2014)
Median, quantile Provides flexibility in the Low —
absolute deviation® tradeoff between
robustness and efficiency
Optimal Trimmed Most efficient for right- Low This study

Harrell-Davis
Median Estimator,
optimal quantile
absolute
deviation®

skewed, heavy-tailed
distributions, but
sensitive to
unpredictably extreme
or infinite values

See Akinshin (2022, 2024) for a detailed explanation.

approaches that use distributional information to identify star performance. In this primer,
we focus on intuitive techniques to help entrepreneurship researchers heed editorial calls to
investigate star performance (Crawford et al., 2022; Maula & Stam, 2020). These
approaches to identify star performers are summarized in Table 5.

Identifying Star Performers Using Estimates of Central Tendency and Variability

The most common cutoff used to identify star performers for continuous, non-negative
measures is mean + k* standard deviations, where k is typically 2, 2.5, or 3 (Aguinis et al.,
2013; Sullivan et al., 2021). As discussed ecarlier, the mean and SD are sensitive to even a
single extreme value and, therefore, ill-suited for right-skewed, heavy-tailed distributions of
entreprencurial performance. An alternative cutoff to identify star performers is median +
k*median absolute deviations, where k is typically 2, 2.5, or 3 (Leys et al., 2013). These sta-
tistical properties are less vulnerable to extreme values in the data, making the correspond-
ing cutoff more stable in the presence of influential observations. However, they are better
suited for symmetric distributions (Rousseeuw & Croux, 1993). Moreover, using them car-
ries the risk of identifying a substantial fraction of data points as extreme because the med-
ian is much smaller than the mean for right-skewed, heavy-tailed distributions.

Both the preceding approaches to outlier identification use rules of thumb when choos-
ing a value for “k.” They also assume symmetric distributions and are sensitive to sample
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size (Van Selst & Jolicoeur, 1994). However, statisticians have suggested bootstrapping as
an alternative to determine this critical threshold for right-skewed, heavy-tailed distribu-
tions (Martin & Roberts, 2010). This approach repeatedly resamples the dataset with
replacement to create many simulated samples and subsequently computes a distribution
for “k.” Then, a specific value of “k” is chosen based on a predefined confidence level
instead of an arbitrarily fixed value (e.g., k = 2, 2.5, or 3).

Identifying Star Performers by Fitting a Power Law

To the extent that the observed distribution of performance fits a power law, the critical
value parameter (X,,;,) can serve as a cutoff (Crawford, Linder, et al., 2024; Wales et al.,
2025). For example, Booyavi and Crawford (2023) fit a pure power law to performance
data from the Panel Study of Entrepreneurial Dynamics (PSED) II dataset and use the dis-
tributional parameter X,,;, to differentiate between star and non-star ventures in their study
of how gender influences venture performance. However, this approach is vulnerable to
concerns that pure power laws are ill-suited to real-world contexts with finite limits to per-
formance. Instead, the lognormal or a combination of distributions may better characterize
the observed data (Broido & Clauset, 2019; Cirillo, 2013; Stumpf & Porter, 2012). Indeed,
Crawford, Joo, and Aguinis (2024) use distribution pitting to re-investigate the datasets
used in Crawford et al. (2015) and report that the pure power law is unlikely to characterize
most measures of entrepreneurial performance.

Identifying Star Performers Using the Interquartile Range

The interquartile range (IQR) is a measure of spread or dispersion, representing the range
between the 25th (Quartile 1) and 75th (Quartile 3) percentiles of the data. For performance
measures that are continuous and non-negative, data points above 03 + k X IQR can be
considered star performers, with a typical value of k = 1.5 (Rousseeuw & Hubert, 2011).
However, the IQR is considered more informative for distributions that are symmetric or
moderately skewed (Rousseeuw & Hubert, 2011). Moreover, IQR-based cutoffs often iden-
tify too many points as outliers in the case of right-skewed, heavy-tailed distributions, thus
diluting the focus on star performers (Sullivan et al., 2021).

Identifying Star Performers Using the Quantile Absolute Deviation

While SD-based approaches assume a normal distribution, entrepreneurial performance
data often violates this assumption, necessitating more robust alternatives. Given the pre-
valence of discrete, multimodal, right-skewed, and heavy-tailed distributions across the
sciences, statisticians have developed flexible, nonparametric methods to estimate statisti-
cal dispersion and variability robustly.

One recent advance in this area is the Quantile Absolute Deviation (QAD) (Wooff &
Jamalzadeh, 2013). Conceptually, the QAD generalizes the well-established MAD by
allowing the user to choose any quantile of interest as the reference point (Akinshin, 2022).
For example, researchers focused on star performers might measure absolute deviations
around the 95th percentile instead of the 50th percentile (i.e., the median). Conversely, if
researchers are primarily concerned about unpredictably extreme—even infinite—values in
the data, they might specify the QAD for the 50% quantile, in other words, the MAD.
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However, such concerns are absent in entrepreneurship research because real-world perfor-
mance is finite.

The flexibility of QAD with respect to the reference point is valuable in controlling the
tradeoff between the robustness of a measure of variability (i.e., how sensitive it is to
extreme values) and its efficiency (i.e., how precisely it estimates variability) (Pinsky &
Klawansky, 2023). Notably, Akinshin (2022) shows that setting the reference quantile at
86.2%—the Optimal QAD (OQAD)—maximizes statistical efficiency, setting it at 50%
(the MAD) maximizes robustness, and setting it at 68.3%—the Standard Q AD—yields a
balance between robustness and efficiency. Given these advantages of the QAD, we sug-
gest using the median and the QAD to increase the robustness of outlier cutoffs for right-
skewed, heavy-tailed distributions, rather than using conventional cutoffs based on the SD
or the MAD.

Robust Estimates of Central Tendency and Critical Threshold

We suggest an additional refinement to outlier identification: using the Trimmed Harrell-
Davis Median Estimator (THDME) instead of the sample median when defining cutoffs
for star performance (Akinshin, 2024). The THDME is a modern, robust estimator of cen-
tral tendency that improves on the traditional median. Conceptually, it works by estimat-
ing the weighted average of all order statistics in the sample rather than simply selecting
the middle observation, thus making it more stable and efficient for small samples (Harrell
& Davis, 1982). Moreover, the “trimmed” modification to the traditional Harrell-Davis
estimator down-weights or discards the most extreme values before applying the weighting,
thus making it more robust to extreme observations. This robustness is particularly valu-
able in entrepreneurship research, where star performance often dominates.

Finally, we suggest using bootstrapped values of “k” to determine outlier cutoffs
rather than the traditional thumb rules of k = 2, 2.5, or 3 (Martin & Roberts, 2010). In
this approach, the sampling distribution of the chosen dispersion measure (i.e., QAD) is
empirically derived by repeatedly resampling from the observed data, allowing the mul-
tiplier “k” to be tailored to the specific shape and tail of the observed distribution. This
data-driven method adapts to the actual variability and maintains the appropriate sensi-
tivity for right-skewed, heavy-tailed distributions rather than imposing a generic thresh-
old (e.g., k=2 or 3) grounded in assumptions of normal distributions. Table 5
summarizes the preceding options to identify star performers.

Notably, the proposed QAD-based cutoff for star performance is well-suited for contin-
uous, non-negative measures of performance, such as revenue, employee count, and cus-
tomer count. However, it is ill-suited for binary performance measures (e.g., venture
success or failure), categorical or ordinal performance measures (e.g., revenue < $1M, rev-
enue between $1M and $5M, and revenue > $5M), and measures based on Likert-like
scales.

While using the QAD enhances the precision of identifying star performers, it also
reveals a broader analytical challenge: threshold-based measures, when applied to continu-
ous performance distributions, can obscure important facets of the variability in entrepre-
neurial performance. Addressing this limitation requires moving beyond the “stars versus
non-stars” dichotomy to enable a more nuanced differentiation between different types of
performance distributions, focusing on differences in their tails.
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Three Characteristics of Distributional Tails

In this section, we introduce three interrelated yet distinct characteristics of distributional
tails to enhance the interpretability of empirical findings related to star performance.
Notably, star performance can manifest in equifinal ways. For example, in some entrepre-
neurial contexts, one extreme performer may constitute star performance, whereas in oth-
ers, several exceptional performers may account for the same collective outcome, as
illustrated in Figure 4.

Consider the example of a new seller exploring a category on Amazon.com. The maxi-
mum performance of incumbent sellers in that category can be an aspirational benchmark
for new entrants. The observed extreme performance likely informs resource allocation
expectations and decisions about the capital, effort, and time required for extreme success
(Dunkelberg et al., 2013). Conversely, for Amazon, the platform owner-operator, extreme
performance signifies a seller whose success makes them less dependent on the platform
(Cutolo & Kenney, 2021). Arguably, Amazon prefers an oligopoly of several exceptional
performers over a monopoly. Similarly, policymakers focused on job creation may prefer a
configuration with exceptional performers more dispersed across different regions and
industries over a few extreme performers concentrated in only a few regions and industries
(Brown et al., 2017).

The extensive literature on firm growth provides further insights into the tail extremity
of performance distributions (Coad, 2009; Coad et al., 2024; Davidsson & Wiklund, 2013).
For example, an analysis of U.K. ventures revealed that “it is the 7th or 8th decile of the
growth distribution that has the highest survival chance” (Coad et al., 2020, p. 1).
Paradoxically, being an extreme success in scaling a venture tends to adversely impact the
odds of profitability and survival, even though better performance is positively associated,
on average, with higher survival rates (Ben-Hafaiedh & Hamelin, 2023; Freel & Gordon,
2022). Furthermore, prior research has discussed the often substantial role of chance, luck,
and randomness as performance becomes extreme. In other words, extreme performance
may not necessarily indicate extreme ability or skill (Denrell & Liu, 2012; Henderson et al.,
2012; Liu & De Rond, 2016). Instead, luck and chance may transmute randomness at the
micro level to systematic patterns at the macro level, calling into question trait-based
explanations of extreme performance (Denrell et al., 2015; Denrell & Liu, 2021). In sum,
there is a need for a more nuanced understanding of the odds and extremity of star perfor-
mance in entrepreneurial settings.

Tail Impact, Tail Extremity, and Tail Frequency

To enhance the identification and interpretation of the nuances of star performance, we
propose three interrelated yet distinct metrics: tail impact, tail extremity, and tail frequency.
Tail impact quantifies the proportional contribution of star performers vis-a-vis the aggre-
gate performance within the distribution, that is, across all performers in a given industry,
market, or product category. Tail extremity quantifies the magnitude of deviation of the
most extreme observation from the distribution’s central tendency, that is, the extent to
which the highest performer exceeds the typical performer. Tail frequency captures the
number of star performers relative to the overall number of performers. Because tail impact
helps answer “Does star performance matter,” it carries primacy over tail extremity and tail
frequency, which together help answer “In what way does star performance matter.” Table 6
summarizes the conceptualization and operationalization of these novel tail characteristics.
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[B] Several Exceptional Performers (n = 1000, median performance = 50)
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[C] A Mix of Extreme and Exceptional Performers (n = 1000, median performance = 50)
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Note: For each configuration, cumulative performance across all 1000 performers = 100,000.

Figure 4. lllustrative configurations of star performance: (A) A few extreme performers (n= 1,000,
median performance = 50). (B) Several exceptional performers (n = 1,000, median performance = 50).
(C) A mix of extreme and exceptional performers (n= 1,000, median performance = 50).

Note. For each configuration, cumulative performance across all 1,000 performers = 100,000.
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Table 6. Characteristics of Distributional Tails.

Tail characteristic

Key question

Operationalization

Computation

Tail impact

Tail extremity

Tail frequency

Collectively, how impactful are
star performers vis-a-vis the
pool of performers?

To what extent does the most
extreme performer
outperform the typical
performer?

What is the proportion of star
performers in a pool of
performers?

Cumulative performance of star
performers as a proportion of
the aggregate performance
across all performers in the
pool

Maximum value of performance
relative to the typical value of
performance of the pool

Number of star performers as a
fraction of all performers in
the pool

Ziestars Pi

Zjeall Pl

max(P)/median(P)

Nstars/NaII

Note. P;= performance of performer i; N,; = number of performers; Ng.s = number of star performers.

Tail Impact

The combined contribution of star performers to the cumulative outcome of a pool of per-
formers indicates how impactful these star performers are in a specific entrepreneurial con-
text. For example, if the cumulative annual revenue of all sellers in an Amazon category is
$100 million, of which the star performers collectively account for $60 million, the tail
impact for that category is 60%. By making tail impact a percentage measure, we can com-
pare the relative contribution of star performers across industries, markets, product cate-
gories, or regions. Indeed, the collective revenue or profit share of star performers in a
given industry provides important information about star performance not only to new
entrants but also to incumbents or investors contemplating new investments (Cochrane,
2005).

Tail Extremity

The maximum value of performance is of substantive interest to entrepreneurs seeking
extreme success as well as to investors, policymakers, researchers, and other stakeholders
(Nystrom et al., 2010). Here, the focus is on the observed maximum performance. Without
a theoretical upper bound, the best evidence-based estimate for maximum performance is
the observed highest performance in the focal industry, market, or product category.
Comparing performance maxima across “pools of performers” benefits from normaliza-
tion (Micceri, 1989; Morrison & Tobias, 1965). Therefore, we propose the ratio of the
maximum value (“the best”) to the median value (“the rest”) of performance as a normal-
ized measure of tail extremity. This scale-independent measure of extremity enables com-
parisons across industries, markets, product categories, et cetera.

Tail Frequency

The number of star performers indicates how frequently the performers in a given context
exceed the threshold for star performance. We measure tail frequency as the proportion of
star performers among a pool of performers. For example, if the performance for 50 out of
all 1,000 entrepreneurs operating in a category exceeds the cutoff for star performance, the
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Figure 5. An illustration of tail impact, extremity, and frequency.
Note. Simulated data with n=200 and lognormal distribution (mu =1, sigma=1.2).

tail frequency for that category is 5%. This normalized operationalization of tail frequency
enables comparisons across different categories, industries, or markets. Hence, this measure
helps ambitious competitors assess their odds of stellar performance when making market
entry and exit decisions (Cassar, 2010). Similarly, it allows investors of risk capital—for
whom star performers often drive portfolio returns—to better estimate the odds of their
portfolio companies achieving exceptional performance (Mason & Harrison, 2002).
Finally, the number of star performers helps assess the competitive intensity among them.

Figure 5 illustrates tail impact, extremity, and frequency using a simulated dataset with
200 performers, of which 14 are star performers (tail frequency = 7%). These star perfor-
mers collectively capture approximately 29% of the cumulative performance across all 200
performers (tail impact = 29%). Thus, tail impact captures the tail area relative to the over-
all area in Figure 5, independent of how it is distributed along the X-axis (performance)
and the Y-axis (number of performers). The best performer outperforms the typical perfor-
mer by approximately 13-fold (tail extremity of 13). Together, these tail characteristics and
their operationalization represent a substantive addition to the methodological framework
for investigating star performance in entrepreneurship.

Envisioned Role of Tail Characteristics

We suggest that the tail characteristics introduced above can play an important role as
interrelated dependent variables in future studies of entrepreneurial performance. Unlike
traditional statistical analyses of outliers, which typically assess the sensitivity of average-
focused results to extreme values (Aguinis et al., 2013), these tail characteristics draw expli-
cit attention to extreme values in the distribution. In doing so, they encourage and enable
researchers to study the antecedents and mechanisms of star performance. Furthermore,
unlike organizational research on star performers (O’Boyle & Gotz, 2025), which often
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dichotomizes individuals into stars and non-stars, the tail characteristics account for multi-
ple facets of star performance.

The combined application of tail impact, extremity, and frequency promises a more
nuanced capturing of star performance. Moreover, analytical techniques such as seemingly
unrelated regression can factor in the inherent correlations between these tail characteristics
(Fiebig, 2001; Zellner, 1962). Finally, the scale-independent operationalization of these tail
metrics allows for systematically comparing contextual influences on star performance. For
example, researchers can examine how industry characteristics affect the prevalence and
importance of star performance by comparing the respective tail characteristics. Finally,
the intuitiveness of these tail characteristics promises to enhance the interpretation of effect
sizes for policy and practice in studies of star performance (Connelly et al., 2010).

Toward a Multifaceted Distributional Perspective to Enrich Empirical
Research

The preceding sections juxtapose established univariate distributional properties with the
three newly introduced tail characteristics. Together, they can serve as valuable tools for
empirical studies of star performance. Because this paper focuses on right-skewed, heavy-
tailed distributions, we expect moderate-to-high pairwise correlations between various dis-
tributional properties. For example, research suggests skewness is often highly correlated
with kurtosis, even though they are, respectively, the third and fourth moments of the dis-
tribution (Cristelli et al., 2012). Similarly, we expect tail frequency and tail impact to be
consistently correlated because they both capture the thickness of distributional tails.

Despite this partial overlap, each distributional property promises to capture unique
information about the presence, prevalence, and relevance of star performance. Hence,
reporting all the aforementioned statistical properties promises to enhance the rigor of
related quantitative studies (Brinkerink, 2023; Maula & Stam, 2020). For example, in stud-
ies with performers as the primary level of analysis, high tail impact may indicate the need
for testing hypotheses using quantile regression instead of Ordinary Least Squares (OLS)
regression (Koenker, 2017; Kolokas et al., 2022). Moreover, longitudinal changes in skew-
ness, kurtosis, or tail characteristics can inform the development of process theories of
when, how, and why star entrepreneurs dynamically emerge from an initial pool of aspir-
ants (Davidsson & Gruenhagen, 2021; Sternad & Mddritscher, 2022).

Similarly, in studies with pools of performers as the primary level of analysis, the pattern
of correlations between tail frequency and extremity may reveal the influence of contextual
factors on star performance in product categories, industries, or markets. Accordingly,
researchers should try to gain a holistic understanding of their focal dependent variable,
entrepreneurial performance, by conducting multifaceted empirical investigations, looking
for anomalies and counterintuitive patterns, and using visualizations (Schwab, 2018;
Wennberg & Anderson, 2020). Uncovering nuances and patterns in performance distribu-
tions will guide future research design and analytic strategies, thus enhancing theory-
method compatibility (Anderson et al., 2019; Linder et al., 2023).

Summary of the Analytical Framework

Table 7 compares the framework introduced herein, which focuses on star performance,
with traditional approaches, largely focused on average performance. Furthermore,
Table 8 summarizes the key concepts and terms relevant to this study. Together, these
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Table 8. Summary of Key Concepts and Terms.

Key concept/term

Definition/explanation

Distributions

Distributional perspective

Distributional shapes
Distributional tails
Exceptional performers
Extreme performers
Generative mechanism
Outliers

Performers
Performance distributions

Pool of performers

Right-skewed distributions
Right-skewed, heavy-tailed

performance distributions
Star performers

Star performance

Tail impact
Tail extremity

Tail frequency

Statistical representations that describe how a set of observations is
spread across a range of possible outcomes.

An analytical approach that focuses on the full spread of
observations, rather than just the average, to better understand
variability and extremes.

Specific forms (e.g., lognormal) exhibited by a frequency distribution
that describe how observations are concentrated or dispersed.

The extreme ends of a distribution, representing observations far
above or below the central tendency of data.

Star performers whose performance exceeds that of most of the
pool of performers, but who may not be the highest performers.

Star performers whose performance is the absolute highest in the
pool of performers.

The factors and processes that produce the observed performance
distribution, plausibly explaining how its shape and tail(s) arise.

Observations whose values deviate substantially from the bulk of the
data, thus lying in the distributional tails.

Specific individuals, teams, or ventures with performance outcomes.

Statistical distributions representing the variability in performance
among a pool of performers.

A relatively homogeneous group of individuals, teams, or ventures
(e.g., within an industry or a market) used to investigate their
performance.

Asymmetric distributions in which most observations cluster at
lower values, but a small number extend the tail to the right.

Asymmetric distributions where the right tail is not only extended
but also has one or more extremely large values.

Performers whose outcomes lie in the upper tail of the performance
distribution and substantially exceed typical performance levels.

A phenomenon in which one or a small number of performers
within a pool of performers achieve outcomes situated in the right
tail of the performance distribution, thus exerting disproportionate
influence on aggregate outcomes.

The aggregate contribution of star performers relative to the total
performance across the pool of performers.

The magnitude by which the performance of the best (i.e., most
extreme) performer exceeds that of a typical performer.

The proportion of performers classified as stars relative to the total
pool of performers.

tables summarize the methodology developed in the preceding sections. However, a
comprehensive understanding of the suggested framework requires actively engaging
with its constituent analytical steps. Accordingly, the following section applies the meth-
odology to a real-world dataset, enabling readers to observe how the tail characteristics
can yield nuanced and valuable insights into star performance.

lllustrative Application of the Methodological Framework

We apply the suggested framework to the (a) annual revenue and (b) employee counts of
the firms that were featured in the 2021 edition of /nc. Magazine (Inc., 2021). For annual
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Figure 6. Annual revenue distribution (Inc. 5000, 2021 edition, Software industry). n =570 firms.

revenue, we investigate: performance distribution within a single industry and performance
distributions across multiple industries. Notably, the Inc. 5000 sample is self-selected
because privately held U.S. firms voluntarily apply to be featured in Inc. Magazine. This
process likely introduces left-censoring in the sample because slower-growing companies
remain under-represented or absent from the sample. Consequently, distributional proper-
ties such as skewness and tail extremity may be underestimated to a degree, relative to
analyses of a/l privately held firms in the United States. This limitation highlights the
importance of recognizing and reporting context-specific features and sample biases to
inform the interpretation of data and empirical analyses (Schwab & Starbuck, 2017).
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Figure 7. Employee count distribution (Inc. 5000, 2021 edition, Software industry). n =570 firms.

Performance Distribution Within an Industry

First, we estimate statistical properties and tail characteristics for firms in the software
industry, which is the most frequently represented industry on the Inc. 5000 list. Here, the
unit of analysis is the firm, and we seek to understand the distribution of firm performance
in this industry. Figures 6 and 7 show that the distributions of annual revenue and
employee count for these firms are right-skewed and heavy-tailed, consistent with past
research (Crawford, Joo, & Aguinis, 2024). The bottom panels of these figures show the
same distributions using a logarithmic scale, instead of a linear scale, for the X-axis.
Applying the Dpit package, we identify the power law with exponential cutoff and the
Poisson shapes as the most likely distribution shapes for the distribution of annual revenue,
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[A] Annual Revenue Distribution (Software industry) with Fitted Distribution (Power Law with
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Figure 8. Most likely shapes for observed performance distributions (Inc. 5000, 2021 edition, Software
industry).

as shown in the top panel of Figure 8. Further, we identify the lognormal as the best-fitting
shape for the distribution of employee count, as shown in the bottom panel of Figure 8.
These shape-related findings firmly establish the asymmetry and non-normality of the
overall distribution. For more nuanced insights into star performers, Table 9 provides spe-
cific statistical measures and tail characteristics for annual revenue and employee count in
the software industry. Notably, the MAD is significantly smaller than the SD, and the
QAD offers a middle ground for such distributions. The CoV and Gini coefficient indicate
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Table 9. Distributional Properties, Shapes, and Tail Characteristics for Venture Performance (Inc. 5000,
2021 edition, Software Industry).

Statistical property/tail Estimate for annual Estimate for
characteristic revenue ($, million) employee count
Mean 227 163.5
Median 10.4 70
Mode NA 18
Minimum 20 |
Maximum 364.8 3,696
Standard Deviation 36.4 305.7
Median Absolute Deviation 94 68.2
Quantile Absolute Deviation 30.5 200.3
Coefficient of Variation 1.6 1.9
Gini coefficient 0.6 0.6
Skewness 4.6 5.9
Kurtosis 304 50.2
Power law parameters N/A? Kinin = 149
Alpha=2.3
Lognormal parameters Mu: 2.5 Mu: 4.3
Sigma: I.1 Sigma: 1.2
Likely shape(s) using distribution pitting  Power law with exponential cutoff, Poisson Lognormal
Tail impact® 61.2% 61.2%
Tail extremity 35.0 53.0
Tail frequency® 17.4% 15.6%

Note. n=570. OTHDME is the Optimal Trimmed Harrell-Davis Median Estimator; OQAD is the Optimal Quantile
Absolute Deviation.

*The distribution could not be fitted to a power law.

bStar performance cutoff = OTHDME + bootstrapped_critical_value X OQAD.

high levels of inequality. In addition, high levels of skewness and kurtosis are observed
(Westfall, 2014).

Notably, star performers collectively capture over 61% of cumulative performance
across all firms in the industry. Furthermore, the best performing firm in the software
industry has 35 times the revenue of the typical (median) performer. The tail extremity for
employee count is even higher at 53. Finally, for performance measured as annual revenue,
17% (99 out of 570) of firms in the software industry are identified as star performers
using the THDME and QAD to determine outlier cutoffs.

Performance Distribution Across Industries

The Inc. 5000 list includes firms from a variety of industries (Inc., 2021). This classification
allows us to examine how the distribution of performance for these private firms varies
across industries. We filtered out industries with fewer than 15 firms due to concerns about
the reliability of estimates. The final sample comprised 4,986 companies across 26 indus-
tries. Here, we focus on annual revenue as the measure of performance. In the three-
dimensional plot in Figure 9, each of the 26 points represents the tail impact, extremity,
and frequency for the respective industry. As shown in Table 10, tail impact ranges from
approximately 39% to 91%, tail extremity from 10 to 710, and tail frequency from 7% to
17%. Figure 9 illustrates how some industries (e.g., IT Systems Development) have very
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Figure 9. Tail characteristics for annual revenue distributions (Inc. 5000, 2021 edition).
Note. n =26 industries; see Table 10 for each industry’s sample size and tail characteristics.

high tail frequency (17.7%), whereas others (e.g., Human Resources) have very high tail
extremity (712.0).

Next, we examine the correlations between unitless estimates of variability, such as CoV,
Gini coefficient, skewness, and kurtosis, and the three tail characteristics. The CoV, Gini
coefficient, skewness, and kurtosis are highly intercorrelated (r > .6), indicating overlap in
the information they provide, as shown in Figure 10. Tail frequency is uncorrelated with
tail extremity and only moderately correlated (r = .45) with tail impact. Together, these
characteristics enable a multifaceted perspective of industry-specific star performance.
While any of the aforementioned statistical properties, such as skewness and kurtosis, can
serve as focal dependent variables in hypothesis testing and robustness analyses, using the
newly introduced tail characteristics promises more fine-grained studies of star perfor-
mance and findings that are easier to interpret for researchers and practitioners.

Finally, Figure 11 shows the distribution of annual revenue for firms in two industries,
namely “Education” and “IT Systems Development.” Both distributions are noticeably
right-skewed and heavy-tailed, and both industries have a similar tail impact and magni-
tude of revenue for the highest performer. However, the former (latter) has a relatively
higher tail extremity (tail frequency) combined with a relatively lower tail frequency (extre-
mity). These industries may substantively differ in the key factors that drive the odds and
extremity of star performance. When industry and market characteristics likely play a criti-
cal role in the emergence of star performance, studies must prioritize the development of
context-specific theories designed for rigorous empirical testing (Shepherd & Wiklund,
2009; Shepherd et al., 2019).
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Table 10. Industry-Wise Tail Characteristics for Distributions of Annual Revenue (Inc. 5000, 202
Edition).

No. of Tail Tail Tail
No. Industry firms (n) impact (%) extremity frequency (%)
| Human Resources 102 91 712 13
2 Security 69 91 691 12
3 Government Services 181 83 529 15
4 Construction 286 8l 302 15
5 Real Estate 207 79 303 14
6 Financial Services 297 79 176 16
7 Retail 171 79 158 15
8 Health 370 74 179 15
9 Business Products & Services 550 74 100 15
10 Logistics & Transportation 176 72 126 14
Il IT Management 256 72 105 15
12 Manufacturing 177 71 72 15
13 Food & Beverage 145 70 56 16
14 Consumer Products & Services 335 68 106 16
15 Education 82 68 74 10
16 Insurance 78 68 69 13
17 IT Systems Development 164 68 48 18
18 Media 31 66 16 13
19 Advertising & Marketing 414 64 71 16
20 Environmental Services 46 64 26 13
21 Software 570 61 34 17
22 Energy 6l 59 39 10
23 Telecommunications 88 57 27 14
24 Engineering 65 46 14 I
25 Computer Hardware 38 44 10 I
26 Travel & Hospitality 27 39 10 7

Extending the Proposed Methodology to Left Tails of Performance
Distributions

So far, we have focused on performance measures such as annual revenue and employee
counts that are not only continuous but also always positive. In other words, we have
focused on right-skewed distributions and, thus, the right tails of such distributions. In this
section, we extend the conceptual framework to performance measures such as return on
assets (RoA) and net income, which can also take on negative values. Thus, we apply tail
impact, extremity, and frequency to characterize the left tails of performance distributions.

Distributions of performance measures such as RoA have both left and right tails, corre-
sponding to extreme negative and positive values, respectively. Prior research—primarily
by economics scholars—has shown that such performance outcomes often follow “double
exponential” (i.e., tent-shaped) distributions (Bottazzi & Secchi, 2006, 2011; Mundt et al.,
2016). This research stream has identified the Laplace and Subbotin distributions as the
best-fitting shapes for such outcomes (Mundt et al., 2020; Scharfenaker & Semieniuk,
2017; Vidal-Tomas et al., 2022). Moreover, a recent study has found that a mixture (specif-
ically, the product) of two distributions, normal and lognormal, best fits the observed data
of 20-year long-term profit for publicly listed firms in the United States, Germany, and the
United Kingdom (Wibbens, 2024).
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Figure 10. Correlations between measures of variability of annual revenue (Inc. 5000, 2021 edition, 26

industries).

Note. n=26 industries. Graphs on the diagonal represent the distribution of the respective variability estimates across
industries. Graphs on the lower triangle represent the pairwise scatterplot for two variability estimates across
industries.

When examining the mechanisms that engender the above shapes, researchers have sug-
gested classical competition, firm diversification strategies, and technological or regulatory
shocks as plausible explanations for “double exponential” distributions (Alfarano &
Milakovi¢, 2008; dos Santos & Scharfenaker, 2019). In addition, firm entry and exit
dynamics may help explain why asymmetric distributions with “fatter” left tails than right
tails tend to evolve into nearly symmetric distributions over time (Mundt & Oh, 2019). To
illustrate how the introduced framework applies to both tails, we first replicate the “tent-
shaped” distributions for RoA for firms publicly listed in the United States. Figure 12
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Figure 11. Comparing annual revenue distributions of two industries (Inc. 5000, 2021 edition).

shows that the right tail is longer than the left tail for RoA, potentially reflecting the forced
exit of the worst-performing firms.

Next, we separately compute left-tail and right-tail characteristics for RoA. We find that
tail extremity and frequency are negatively correlated® (r = —.39%* for left tail, r = —.32%
for right tail), while tail extremity and impact are positively correlated (r = .67*** for left
tail, r = .69*%* for right tail). Tail frequency and impact are also positively correlated
(r = .30 for left tail, » = .20 for right tail). Figure 13 shows the corresponding three-
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Figure 12. Return on Assets distribution for publicly listed firms in the United States.
Note. n=41 industries; m= 15 to 325 firms per industry.
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Figure 13. Left and right tail characteristics of return on assets for publicly listed firms in the United
States.
Note. n=41 industries; m= 15 to 325 firms per industry.

dimensional plot. These correlations for RoA are consistent with those observed for reve-
nue (i.e., for distributions of non-negative performance measures).

In sum, the suggested tail characteristics are relevant and applicable to the left tails of
performance distributions. Importantly, they can be used to compare left and right tails,
for example, in studies that examine how generative mechanisms for extreme “winners” dif-
fer from those for extreme “losers” (Mundt et al., 2022; Turetsky, 2018).
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Figure 14. Workflow for systematic evaluation of star performance in entrepreneurship.

Discussion

This methodological primer seeks to support explicit and fine-grained investigations of star
performance in entrepreneurship. Figure 14 outlines the suggested workflow for such stud-
ies. We show how a combination of various statistical properties can enrich the understand-
ing of variability in performance. Further, we introduce tail impact, tail extremity, and tail
frequency as additional properties for such investigations. These novel tail properties not
only promise to reveal additional nuances of star performance but are also easier to trans-
late into implications for entrepreneurship research, practice, and policy.
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Implications for Research

As Table 11 indicates, this study enriches the portfolio of methodologies by expanding the
focus from distributional properties and shapes to specific characteristics of distributional
tails. The findings that emerge upon applying the suggested methodology will likely stimu-
late research exploring predictors and mechanisms associated with star performance.

For example, analyses at the level of “pools of performers” may reveal unique config-
urations of tail characteristics. Specifically, a single extreme performer may account for the
entire star performance (tail impact) in some industries, whereas a larger pool of star per-
formers may account for the same collective outcome in other industries. Such patterns
carry important implications for resource allocation decisions by entrepreneurs, the more
ambitious of whom may prefer to compete in industries with higher extremity of success
despite lower odds of success, whereas the more conservative entrepreneurs may prefer less
extreme outcomes (Dunkelberg et al., 2013; Wiklund et al., 2003).

Moreover, the introduced tail characteristics (i.e., impact, extremity, and frequency) can
serve as focal dependent variables in future studies investigating the emergence of star per-
formance (O’Boyle & Go6tz, 2025). In addition to characteristics of entrepreneurs and their
ventures, industry- and market-level antecedents deserve systematic examination for their
impact on the tails of performance distributions and, in turn, how star performers change
the industries and markets in which they operate. Unlike abstract statistical properties such
as skewness and kurtosis, tail characteristics are more intuitive to interpret and relevant for
entrepreneurship practice and policy.

In addition, empirical patterns in tail characteristics should be combined with conjec-
tures and hunches about star performance to support abductive theorizing (Setre & Van
de Ven, 2021). Surprising patterns thus uncovered may highlight the need to reevaluate
study designs (e.g., collect population-level data instead of random samples) and use non-
traditional methods, such as quantile regression, for hypothesis testing. Thus, the intro-
duced methodological framework promises a valuable stepping stone to develop and test
theories about star entrepreneurs (Shepherd & Wiklund, 2009; Shepherd et al., 2019).

Finally, for researchers who seek to investigate star performance in entrepreneurship,
we suggest using the sample R code provided in Supplemental Appendix 1 to examine the
variability in such performance. The first step can involve using the publicly available
Comprehensive Australian Study of Entreprencurial Emergence dataset to test the R code
and gain familiarity with its generated outputs. Next, scholars can use other datasets that
include data for entrepreneurial performance and that have been used in prior research.
These include the Inc. 5000 list (U.S. and Europe editions), the Kauffman Firm Survey,
and Waves 1 and 2 of the PSED (Crawford, Joo, & Aguinis, 2024; Crawford et al., 2015).

Implications for Practice

The methodological framework developed in this study has several important implications
for entrepreneurship practitioners and policymakers. For entrepreneurs, the prospect of
star performance often underpins entreprencurial intent, motivation, and action (Cassar,
2010; Hogarth & Karelaia, 2012). Applying the framework to their industry of interest,
entrepreneurs can use fail impact to understand how much star performers contribute to
aggregate industry performance, fail extremity to benchmark the magnitude of the best
outcome relative to the most likely outcomes, and tail frequency to estimate their odds of
becoming a star performer in the industry. For example, when targeting the “IT Systems
Development” industry, growth-oriented entrepreneurs in the United States can use the
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distributional properties and tail characteristics for the corresponding Inc. 5000 firms to
realistically gauge their chances of achieving star performance (Fan et al., 2021). Situating
themselves within the performance distribution can help entrepreneurs better align their
resource assessments and investments with their opportunity costs and goals (Dunkelberg
et al., 2013). While many entrepreneurs ostensibly target the extreme right of the perfor-
mance distribution, their capabilities and expectations can constrain their success
(Crawford et al., 2015). Entrepreneurial decision-making can therefore juxtapose tail fre-
quency against tail extremity, thus acknowledging the tension between the likelihood and
magnitude of star performance.

For venture investors and acquirers, the methodological framework developed in this
study can provide actionable insights into potential risks and rewards for their investment
portfolios. For example, historical data for the tail extremity can signal upper bounds for
performance. Similarly, venture capital and private equity funds can assess the historical
tradeoff between tail extremity and tail frequency when choosing or evaluating a target
industry for investments. Thus, decisions to reward (penalize) an entrepreneur for excep-
tional (poor) outcomes can be informed by a careful evaluation of the likely odds and
extremity of star performance (Davidsson, 2021; Davidsson et al., 2020). Moreover, when
appraising investment failures, an explicit focus on distributional tails promises a deeper
understanding of the role of skill versus chance, randomness, or serendipity in driving ven-
ture outcomes (Denrell & Liu, 2012, 2021).

Entrepreneurship educators can integrate the proposed methodological framework into
their pedagogy to help students recognize and overcome an implicit bias toward average
performance (Gala et al., 2023). Educators can foster data-driven understanding of star
performance in entrepreneurial contexts by guiding students to apply the analytical work-
flow summarized in Figure 14 to publicly available datasets.

Implications for Policy

For public policy focused on entreprencurship, the introduced framework underscores the
limitations of relying solely on the number of ventures or average performance as bench-
marks. Formal evaluations of pro-entrepreneurship initiatives indicate that targeting entre-
preneurs based on past average performance—rather than future marginal performance—
can induce policy failure (Brown et al., 2017; Parker, 2005). Failing to recognize and
account for the substantial variance in performance may therefore impede policy success
(Parker, 2007; Shane, 2009). Further, consistent evidence of idiosyncrasy and randomness
in firm growth (Coad, 2009; Delmar et al., 2003) suggests that policymakers should shift
from a focus on individual firms to a broader, distributional perspective targeting pools of
firms, some of which will emerge as star performers.

Because a small number of star performers often generate the bulk of societal benefits,
such as innovation and job creation (Acs et al., 2016), policymakers can use tail impact to
guide the design of initiatives that support entrepreneurial endeavors. Policies can be dyna-
mically adjusted to support star performers until they become self-sustaining, while reallo-
cating resources from underperformers toward emerging stars. Similarly, policymakers can
use tail extremity to evaluate the extent to which a single firm drives the targeted outcomes;
the risks associated with the overreliance on such extreme performers can be mitigated
through diversification and safeguards.
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Limitations and Future Research

Because this brief prioritizes intuitiveness and ease of adoption for entrepreneurship
researchers interested in evaluating star performers, it excludes some complex statistical
techniques for outlier detection (Aggarwal, 2017). Further, this study focuses on univariate
analyses; future research can extend this primer to detecting and evaluating multivariate
outliers (Leys et al., 2019). This primer can also be extended to performance anomalies
(extreme patterns), which differ from performance outliers (extreme data points) and hence
may merit a different methodological framework (Ruef & Birkhead, 2024).

In addition, we call for extensive use of visualization techniques to not only effectively
communicate the nature of variability in entrepreneurial performance but also to evaluate
the emergence of star performers over time (Healy & Moody, 2014; Schwab, 2018; Schwab
et al., 2025; Wennberg & Anderson, 2020). For example, paired with statistical analysis of
longitudinal data, animated performance distributions can help researchers visualize the
emergence of star performers from an initial pool of aspirants.

Finally, we call for methodological guidance to support explicit empirical investigation
of the underlying processes that engender star performance in entrepreneurship. One pro-
mising avenue involves computational models and simulations because they can lend rich
insights into generative mechanisms that engender different types of skewed performance
distributions (Vancouver et al., 2016). Another promising methodological approach is
abduction, wherein scholars iterate between (a) exploratory quantitative analyses to dis-
cover empirical patterns and (b) literature reviews to identify plausible explanations and
propose better theories for the emergence of star performance (Setre & Van de Ven, 2021).

Conclusion

This methodological primer provides a valuable framework for empirical studies that go
beyond the prevalent focus on average performance by explicitly examining star perfor-
mance through a distributional perspective. The statistical properties and tail characteris-
tics outlined in this analytical guide enable researchers to undertake much-needed
investigations of the antecedents, emergence, and implications of star performance. In
sum, we seek to motivate research that builds evidence-based theories to explain and pre-
dict the substantial performance variability often observed in entrepreneurial settings.
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Notes

1. For continuous and positive measures of performance, such as revenue, employee count, and
funding.

2. We use the term outliers when discussing generic statistical properties and analytical techniques.
We use the term star performers when discussing actual distributions of entrepreneurial perfor-
mance. We conceptually map star performers to influential outliers (Aguinis et al., 2013).

3. Spearman correlation coefficient. *p < .05; **p < .01; ***p < .001.
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